Abstract

Resonantly enhanced x-ray difference-frequency generation (re-XDFG) is a second-order nonlinear effect that involves illuminating a molecule with two-color x-ray pulses with photon energies Ω1 and Ω2. The energy difference is tuned to match an x-ray absorption edge of an atom in the molecule. We have numerically studied the re-XDFG effect considering different individual molecules in the gas phase using density functional theory calculations and have verified the non-centrosymmetric character of the target transitions. Two-level molecular systems with permanent dipoles are evaluated for the description of re-XDFG taking into account different two-color input pulse geometries. This innovative nonlinear x-ray methodology offers a means to measure the K-edge NEXAFS spectrum of light elements, such as carbon, nitrogen, or oxygen, in dense media using non-resonant x-rays. It can also be used to investigate chemical material dynamics that are inaccessible by linear spectroscopy. These findings enable the combination of atomic-scale structure with chemical specificity and the selective and local access to x-ray excitations using hard x-ray pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.