Abstract

Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control systemconsists of identical collocated actuator-sensor pairs on each of theblades, and targets a set of three modes constituting a collective mode with identical motion of all the blades, and two independent whirling modes, in which a relative motion pattern moves forward or backward over the rotor. The natural frequency of the collective mode is typically lower than the frequency of the whirling modes due to support flexibility. The control signals from the blades are combined into amean signal, addressing the collective mode, and three components from which the mean signal has be subtracted, addressing the pair of whirling modes. The response of the actuators is tuned to provide resonant damping of the collective mode and the whirling modes by using the separate resonance characteristics of the collective and the whirlingmodes. In the calibration of the control parameters it is important to account for the added flexibility of the structure due to influence of other nonresonant modes. The efficiency of the method is demonstrated by application to a rotor with 42mblades, where the sensor/actuator system is implemented in the form of an axial extensible strut near the root of each blade. The load is provided by a simple but fully threedimensional correlated wind velocity field. It is shown by numerical simulations that the active damping system can provide a significant reduction in the response amplitude of the targeted modes, while applying control moments to the blades that are about 1 order of magnitude smaller than the moments from the external load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.