Abstract

The last decade has seen an explosive growth in the use of color centers for metrology applications, the paradigm example arguably being the nitrogen-vacancy (NV) center in diamond. Here, we focus on the regime of cryogenic temperatures and examine the impact of spin-selective, narrow-band laser excitation on NV readout. Specifically, we demonstrate a more than fourfold improvement in sensitivity compared to that possible with nonresonant (green) illumination, largely due to a boost in readout contrast and integrated photon count. We also leverage nuclear spin relaxation under resonant excitation to polarize the ^{14}N host, which we then prove beneficial for spin magnetometry. These results open opportunities in the application of NV sensing to the investigation of condensed matter systems, particularly those exhibiting superconducting, magnetic, or topological phases selectively present at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call