Abstract

The non-equilibrium Green's function technique is used to study the transport characteristics of double-barrier magnetic tunnel junctions. The exchange coupling strength of the electrodes is found to be crucial in deciding the magnetoresistance characteristics of these devices. At sufficiently large values of the magnetic coupling strength, the device is found to exhibit resonant tunnel magnetoresistance and its magnitude is found to be large. The existence of pure spin currents in these devices when there is antiferromagnetic coupling between the end electrodes is found to be the primary cause of resonant tunnel magnetoresistance. The influence of the band occupation of the electrodes and the many-body interaction present in the electrode regions on the spin current and magnetoresistance are also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.