Abstract

Resonant Toroidal Alfven Eigenmodes (RTAEs) [1, 2] excited by neutral beam ions are observed in the region of the internal transport barrier in enhanced reverse shear (ERS) plasmas on TFTR. These modes occur in multiples of the same toroidal mode number in the range n=2-4 and appear as highly localized structures near the minimum in the q-profile with frequency near to that expected for TAEs. Unlike regular TAEs, these modes are observed in plasmas where the birth velocity of beam ions is well below the fundamental or sideband resonance condition. Theoretical analysis indicates that the Toroidicity induced Alfven Eigenmode (TAE) does not exist in these discharges due to strong pressure gradients (of the thermal and fast ions) which moves the mode frequency down into the lower Alfven continuum. However a new non-perturbative analysis (where the energetic particles are allowed to modify the mode frequency and mode structure) indicates that RTAEs can be driven by neutral beam ions in the weak magnetic shear region of ERS plasma, consistent with observations on TFTR. The importance of such modes is that they may affect the alpha particle heating profile or enhance the loss of energetic alpha particles in an advanced tokamak reactor where large internal pressure gradients and reverse magnetic shear operation are required to sustain large bootstrap current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.