Abstract

We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon-defect coupling is proportional to the phonon lifetime and has a "side-jump" interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistatic magnetic order with an isotropic Zeeman coupling to the applied field and without spin-orbit interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.