Abstract

The tunnel magnetoresistance (TMR) of F/O/F magnetic junctions, (F's are ferromagnetic layers and O is an oxide spacer) in the presence of magnetic impurities within the barrier, is investigated. We assume that magnetic couplings exist both between the spin of impurity and the bulk magnetization of the neighboring magnetic electrode, and between the spin of impurity and the spin of tunneling electron. Consequently, the resonance levels of the system formed by a tunneling electron and a paramagnetic impurity with spin S=1, are a sextet. As a result the resonant tunneling depends on the direction of the tunneling electron spin. At low temperatures and zero bias voltage the TMR of the considered system may be larger than TMR of the same structure without paramagnetic impurities. It is calculated that an increase in temperature leads to a decrease in the TMR amplitude due to excitation of spin-flip processes resulting in mixing of spin up and down channels. It is also shown that asymmetry in the location of the impurities within the barrier can lead to asymmetry in $I(V)$ characteristics of impurity assisted current and two mechanisms responsible for the origin of this effect are established. The first one is due to the excitation of spin-flip processes at low voltages and the second one arises from the shift of resonant levels inside the insulator layer under high applied voltages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.