Abstract

Within the Luttinger Hamiltonian, electric-field-induced resonant spin polarization of a two-dimensional hole gas in a perpendicular magnetic field was studied. The spin polarization arising from splitting between the light and the heavy hole bands shows a resonant peak at a certain magnetic field. Especially, the competition between the Luttinger term and the structural inversion asymmetry leads to a rich resonant peaks structure, and the required magnetic field for the resonance may be effectively reduced by enlarging the effective width of the quantum well. Furthermore, the Zeeman splitting tends to move the resonant spin polarization to a relative high magnetic field and destroy these rich resonant spin phenomena. Finally, both the height and the weight of the resonant peak increase as the temperature decreases. It is believed that such resonant spin phenomena may be verified in the sample of a two-dimensional hole gas, and it may provide an efficient way to control spin polarization by an external electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call