Abstract

We propose a silicene-based lateral resonant tunneling device by placing silicene under the modulation of top nonmagnetic/ferromagnetic/nonmagnetic sandwich nanogates. Following the electric-tunable bandgap of silicene, lateral double-barrier structure is formed by imposing the flexible electrostatic modulation on top gates. By aligning the spin and valley-resolved confined states in magnetic well, remarkable spin/valley polarization can be accessed through spinor-relying resonant tunneling mechanism. Under the electrostatic, magnetic, and size manipulation, the confined well state can be efficiently engineered, and the observed spin and valley polarization can be further flexibly tuned, offering some helpful strategies to construct spinor-electronic logic atomically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.