Abstract

Semiconductor quantum dots containing two electrons, also called artificial quantum-dot helium atoms, are model structures to investigate the most fundamental many-particle states induced by Coulomb interaction and the Pauli exclusion principle. Here, electronic excitations in quantum-dot helium are investigated by resonant Raman spectroscopy in magnetic fields. We observe transitions from the ground state into the excited singlet state and, in the depolarized Raman configuration which allows spin-flip processes, into the triplet state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call