Abstract

Resonant Raman spectra of armchair graphene nanoribbons (AGNRs) are computed using Density Functional Theory (DFT) and third-order perturbation theory. Results are benchmarked against available experimental data and compared to previously used theoretical approaches based on the Placzek approximation. Comparable agreement with experiments is found for both previously and presently used methods. In addition, a numerical analysis is carried out to provide a justification for the resonant modeling method based on the use of the frequency-dependent dielectric tensor in the Placzek approximation. This work also provides additional predictions and references for wide AGNRs that might be investigated with Raman scattering experiments in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call