Abstract

Raman excitation profiles were generated between 695 and 985 nm for individual carbon nanotubes dispersed in aqueous solution. We confirmed that previously published spectral assignments for semi-conducting and metallic carbon nanotubes are able to predict the location and resonant maxima of radial breathing mode features in the Raman spectrum. Three large diameter features were observed within the excitation space over the scan range and accurately predicted as metallic species. There was significant agreement between predicted and observed Raman modes. However, one discrepancy is noted with the (6,4) nanotubes. This species is not observed when excited at or near its absorption transition. We find that the Raman cross-sections in general, assuming a diameter-based distribution of nanotubes, are disproportionately smaller for mod(n-m,3)=1 semi-conducting nanotubes than their counterparts by at least an order of magnitude. These results have important implications for the use of Raman spectroscopy to effectively characterize the chirality distribution of carbon nanotube samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.