Abstract

With the trend toward achieving high efficiency, high power density and high operating frequency in power converters, a galvanic isolated circuit architecture is proposed in this article for high step-up applications with wide input-voltage range. This converter consists of a current-fed resonant push-pull (PP) converter as a dc transformer (dcX) dealing with most of the power with high efficiency and an active clamp flyback converter (ACF) as a regulator within a large conversion range. As a single-stage converter, the ACF regulator is paralleled with PP converter to share the total power and regulates the high output voltage. An experimental prototype with an input-voltage range of 24-32 V and output 400 V/400 W is built under 1 MHz switching frequency. A peak efficiency of 97.1% and a power density of 210 W/in <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> (or 13 W/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> ) are achieved. Experimental result validates the correctness of the analysis and proves the feasibility of the proposed converter for MHz high step-up dc-dc conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.