Abstract

We provide a comprehensive analysis of the resonant properties of the memory capacity of a reservoir computer based on a semiconductor laser subjected to time-delayed filtered optoelectronic feedback. Our analysis reveals first how the memory capacity decreases sharply when the input-data clock cycle is slightly time-shifted from the time delay or its multiples. We attribute this effect to the inertial properties of the laser. We also report on the damping of the memory-capacity drop at resonance with a decrease of the virtual-node density and its broadening with the filtering properties of the optoelectronic feedback. These results are interpretated using the eigenspectrum of the reservoir obtained from a linear stability analysis. Then, we unveil an invariance in the minimum value of the memory capacity at resonance with respect to a variation of the number of nodes if the number is big enough and quantify how the filtering properties impact the system memory in and out of resonance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call