Abstract

The dynamic response of dipole skyrmions in Fe/Gd multilayer films is investigated by ferromagnetic resonance measurements and compared to micromagnetic simulations. We detail thickness and temperature dependent studies of the observed modes as well as the effects of magnetic field history on the resonant spectra. Correlation between the modes and the magnetic phase maps constructed from real-space imaging and scattering patterns allows us to conclude the resonant modes arise from local topological features such as dipole skyrmions but does not depend on the collective response of a closed packed lattice of these chiral textures. Using, micromagnetic modeling, we are able to quantitatively reproduce our experimental observations which suggests the existence of localized spin-wave modes that are dependent on the helicity of the dipole skyrmion. We identify four localized spin wave excitations for the skyrmions that are excited under either in-plane or out-of-plane r.f. fields. Lastly we show that dipole skyrmions and non-chiral bubble domains exhibit qualitatively different localized spin wave modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.