Abstract
We have determined the on-site molecular Coulomb interaction energy U of a (C59N)2 bulk film and find values ranging from 1.10+/-0.10 eV for the highest occupied molecular orbital to 1.35+/-0.10 eV for the deeper lying orbitals, comparable to values found in C60. The on-site Coulomb interaction between a carbon core hole and valence electrons, Uc, is, however, substantially lower than in C60 at 1.35+/-0.07 eV. Resonant photoemission (RESPES) results show a weakened participator decay channel, especially around the N 1s threshold, where resonance of the highest occupied molecular orbital shoulder is absent. Near-edge x-ray absorption fine structure and constant initial state measurements, taken in parallel with the RESPES data, indicate, however, that matrix element effects cannot be ruled out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.