Abstract

We evaluate the proposed resonant terahertz (THz) detectors on the basis of field-effect transistors (FETs) with split gates, electrically induced lateral p–n junctions, uniform graphene layer (GL) or perforated (in the p–n junction depletion region) graphene layer (PGL) channel. The perforated depletion region forms an array of the nanoconstions or nanoribbons creating the barriers for the holes and electrons. The operation of the GL-FET- and PGL-FET-detectors is associated with the rectification of the ac current across the lateral p–n junction enhanced by the excitation of bound plasmonic oscillations in the p- and n-sections of the channel. Using the developed device model, we find the GL-FET- and PGL-FET-detector characteristics. These detectors can exhibit very high voltage responsivity at the THz radiation frequencies close to the frequencies of the plasmonic resonances. These frequencies can be effectively voltage tuned. We show that in PL-FET-detectors the dominant mechanism of the current rectification is due to the tunneling nonlinearity, whereas in the PGL-FET-detector the current rectification is primarily associated with the thermionic processes. Due to much lower p–n junction conductance in the PGL-FET-detectors, their resonant response can be substantially more pronounced than in the GL-FET-detectors corresponding to fairly high detector responsivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.