Abstract

The motions of a non-autonomous Hamiltonian system with one degree of freedom which is periodic in time and where the Hamiltonian contains a small parameter is considered. The origin of coordinates of the phase space is the equilibrium position of the unperturbed or complete system, which is stable in the linear approximation. It is assumed that there is degeneracy in the unperturbed Hamiltonian when account is taken of terms no higher than the fourth degree (the frequency of the small linear oscillations depends on the amplitude) and, in this case, one of the resonances of up to the fourth order inclusive is realized in the system. Model Hamiltonians are constructed for each case of resonance and a qualitative investigation of the motions of the model system is carried out. Using Poincaré's theory of periodic motions and KAM-theory, a rigorous solution is given of the problem of the existence, bifurcations and stability of the periodic motions of the initial system, which are analytic with respect to fractional powers of the small parameter. The resonant periodic motions (in the case of the degeneracy being considered) of a spherical pendulum with an oscillating suspension point are investigated as an application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.