Abstract

We investigate the role played by fast quenching on the decay of metastable (or false vacuum) states. Instead of the exponentially-slow decay rate per unit volume, $\Gamma_{\rm HN} \sim \exp[-E_b/k_BT]$ ($E_b$ is the free energy of the critical bubble), predicted by Homogeneous Nucleation theory, we show that under fast enough quenching the decay rate is a power law $\Gamma_{\rm RN} \sim [E_b/k_BT]^{-B}$, where $B$ is weakly sensitive to the temperature. For a range of parameters, large-amplitude oscillations about the metastable state trigger the resonant emergence of coherent subcritical configurations. Decay mechanisms for different $E_b$ are proposed and illustrated in a (2+1)-dimensional scalar field model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.