Abstract
We show that a nonlinear dynamical system in Poincaré–Dulac normal form (in ℝn) can be seen as a constrained linear system; the constraints are given by the resonance conditions satisfied by the spectrum of (the linear part of) the system and identify a naturally invariant manifold for the flow of the "parent" linear system. The parent system is finite dimensional if the spectrum satisfies only a finite number of resonance conditions, as implied e.g. by the Poincaré condition. In this case our result can be used to integrate resonant normal forms, and sheds light on the geometry behind the classical integration method of Horn, Lyapounov and Dulac.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.