Abstract

We explore the modeling and analysis of nonlinear non-conservative dynamics of macro-fiber composite (MFC) piezo-electric structures, guided by rigorous experiments, for resonant vibration-based energy harvesting, as well as other applications leveraging the direct piezoelectric effect, such as resonant sensing. The MFCs employ piezoelectric fibers of rectangular cross section embedded in kapton with interdigitated electrodes to exploit the 33-mode of piezoelectricity. Existing frameworks for resonant nonlinearities have so far considered conventional piezoceramics that use the 31-mode of piezoelectricity. In the present work, we develop a framework to represent and predict nonlinear electroelastic dynamics of MFC bimorph cantilevers under resonant base excitation. The interdigitated electrodes are shunted to a set of resistive electrical loads to quantify the electrical power output. Experiments are conducted on a set of MFC bimorphs over a broad range of mechanical excitation levels to identify the types of nonlinearities present and to compare the model predictions and experiments. The experimentally observed interaction of material softening and geometric hardening effects, as well as dissipative effects, is captured and demonstrated by the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.