Abstract

We study the response of a weakly damped vibrational mode of a nanostring resonator to a moderately strong resonant driving force. Because of the geometry of the experiment, the studied flexural vibrations lack inversion symmetry. As we show, this leads to a nontrivial dependence of the vibration amplitude on the force parameters. For a comparatively weak force, the response has the familiar Duffing form, but for a somewhat stronger force, it becomes significantly different. Concurrently there emerge vibrations at twice the drive frequency, a signature of the broken symmetry. Their amplitude and phase allow us to establish the cubic nonlinearity of the potential of the mode as the mechanism responsible for both observations. The developed theory goes beyond the standard rotating-wave approximation. It quantitatively describes the experiment and allows us to determine the nonlinearity parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.