Abstract

Electron–ion collisions were studied for various protonated peptide monocations with disulfide bonds, using an electrostatic storage-ring equipped with a merged-electron-beam device. Resonant neutral particle emissions at the energies of 6–7eV were observed, as well as a rise towards zero-energy, which are typical electron-capture dissociation profiles. The presence of disulfide (S–S) bonds tends to enhance the resonant bump heights. Chemical nature of the amino-acid residues adjacent to cysteines appears to correlate with the bump strength. Molecular-dynamical simulations help clarify the role of molecular vibration modes in the electron-capture dissociation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.