Abstract

Different from the conventional Rydberg antiblockade (RAB) regime that either requires weak Rydberg-Rydberg interaction (RRI), or compensates the RRI-induced energy shift by introducing off-resonant interactions, we show that RAB regime can be achieved by resonantly driving the transitions between ground state and Rydberg state under strong RRI. The Rabi frequencies are of small amplitude and time-dependent harmonic oscillation, which plays a critical role for the presented RAB. The proposed unconventional RAB regime is used to construct high-fidelity controlled-Z (CZ) gate and controlled-not (CNOT) gate in one step. Each atom requires single external driving. And the atomic addressability is not required for the presented unconventional RAB, which would simplify experimental complexity and reduce resource consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.