Abstract
We study two resonant Hamiltonian systems on the phase space L 2 ( R → C ) : the quintic one-dimensional continuous resonant equation, and a cubic resonant system that has appeared in the literature as a modified scattering limit for an NLS equation with cigar shaped trap. We prove that these systems approximate the dynamics of the quintic and cubic one-dimensional NLS with harmonic trapping in the small data regime on long times scales. We then pursue a thorough study of the dynamics of the resonant systems themselves. Our central finding is that these resonant equations fit into a larger class of Hamiltonian systems that have many striking dynamical features: non-trivial symmetries such as invariance under the Fourier transform and the flow of the linear Schrödinger equation with harmonic trapping, a robust well-posedness theory, including global well-posedness in L 2 and all higher L 2 Sobolev spaces, and an infinite family of orthogonal, explicit stationary wave solutions in the form of the Hermite functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.