Abstract

ABSTRACTMost vibration-based energy harvesters, including piezoelectric harvester system, perform efficiently at only its resonant frequency as linear resonators, usually at very high frequency which are out of the range of frequency of interest. In real life applications, these linear resonators are impractical since real ambient vibrations are simply having varying lower frequencies. Hence, design a tuneable vibration energy harvester at a lower and useful frequency range of interest are essential in allowing promising energy output to meet intended power input at a more practical approach. In this paper, the piezoelectric voltage energy harvester (PVEH) was designed with a flexible fixture with the aim to reduce its first fundamental natural frequency. Two thickness of elastic fixtures were applied to generate power on PVEH. Three experimental techniques were used to measure the vibration characteristics of PVEH. First, the full-field optical technique, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) measured simultaneously the resonant frequencies and mode shapes. This is followed by the pointwise measurement system, laser Doppler vibrometer (LDV) in which the resonant frequencies were measured by dynamic signal swept-sine analysis. The resonant frequencies and anti-resonant frequencies were also obtained by impedance analysis. The results obtained from experimental measurements were compared with finite element numerical calculation. It is found that the boundary conditions under the elastic fixtures can effectively reduce the resonant frequency of the PVEH with a reasonable voltage output. The fundamental natural frequency of PVEH with the thickness of 0.58-mm elastic fixture is reduced to 37 Hz maintaining at 7.1 volts (1.2 mW), in comparison with the natural frequency on cantilevered PVEH at 78 Hz that produces 7.7 volts (6.5 mW).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call