Abstract

This paper presents a piezoelectric-metal structure called a drum transducer. An equation for calculating the resonance frequency of the drum transducer is obtained based on thin plate elastic theory of piezoelectric and metal material combined with the Rayleigh-Ritz method. The finite element method (FEM) was used to predict the excitation frequency of the drum transducer. To verify the theoretical analysis, the input impedance characteristic of the drum transducer was measured using an experimental method. The results obtained from theoretical analysis were in very good agreement with those from the FEM and experimental results. The effect of geometrical changes to the thick-walled steel ring of the drum transducer at the first resonance frequency is also described. The calculated results were found to be in good agreement with the FEM results. The results indicate that the first resonance frequency of the drum decreases with the increasing inner diameter of the thick-walled steel ring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call