Abstract
A parametrically modulated oscillator has two opposite-phase vibrational states at half the modulation frequency. An extra force at the vibration frequency breaks the symmetry of the states. The effect can be extremely strong due to the interplay between the force and the quantum fluctuations resulting from the coupling of the oscillator to a thermal bath. The force changes the rates of the fluctuation-induced walk over the quantum states of the oscillator. If the number of the states is large, then the effect accumulates to an exponentially large factor in the rate of switching between the vibrational states. We find the factor and analyze it in the limiting cases, including the prebifurcation regime where the system is close but not too close to the bifurcation point. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.