Abstract

Quantum emitters in layered hexagonal boron nitride (hBN) have recently attracted a great deal of attention as promising single photon sources. In this work, we demonstrate resonant excitation of a single defect center in hBN, one of the most important prerequisites for employment of optical sources in quantum information processing applications. We observe spectral line widths of an hBN emitter narrower than 1 GHz while the emitter experiences spectral diffusion. Temporal photoluminescence measurements reveal an average spectral diffusion time of around 100 ms. An on-resonance photon antibunching measurement is also realized. Our results shed light on the potential use of quantum emitters from hBN in nanophotonics and quantum information processing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.