Abstract

Magnetoplasmonic crystals are spatially periodic nanostructured magnetic surfaces combining the features of surface plasmon polariton excitation and magneto-optical tunability. Here we present a comprehensive experimental and theoretical work demonstrating that in magnetoplasmonic crystals the coupling of free space radiation to surface plasmon polariton modes in conjunction with the inherent magneto-optical activity, enable cross-coupling of propagating surface plasmon polariton modes. We have explored the consequences of this unique magnetoplasmonic crystal optical feature by studying the light reflected from a two-dimensional periodic array of cylindrical holes in a ferromagnetic layer illuminated at oblique incidence and magnetized in the sample plane, namely, in the so-called longitudinal Kerr effect geometry. We observe that the magneto-optical spectral response arises from all the excitable surface plasmon polariton modes in the magnetoplasmonic crystal irrespective of the incoming light polarizati...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.