Abstract

Efficient resonant energy transfer occurs within the R1 line of the 4A2 → 2E transition of the [Cr(ox)3]3- chromophore in mixed crystal [Rh(bpy)3][NaAl1-xCrx(ox)3]ClO4 (x = 0.05−0.9, ox = oxalate, bpy = 2,2‘-bipyridine). This manifests itself in the form of multiline patterns in resonant fluorescence line narrowing (FLN) experiments at 1.5 K. The conditions for such a resonant process to occur are that the inhomogeneous line width of the R1 line is larger than the zero-field splitting of the ground state, which, in turn, is larger than the homogeneous line width of the transition. The number of lines and their relative intensities depend critically upon the [Cr(ox)3]3- concentration and the excitation wavelength within the inhomogeneous distribution. The basic model for resonant energy transfer as presented by von Arx et al. (Phys. Rev B 1996, 54, 15800) is extended to include the effects of diluting the chromophores in an inert host lattice and of nonresonant R2 excitation. In addition, Monte Carlo simulations serve to explain the temporal evolution of the multiline pattern following pulsed excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.