Abstract

We demonstrate efficient resonant energy transfer from excitons confined in silicon nanocrystals to molecular oxygen (MO). Quenching of photoluminescence (PL) of silicon nanocrystals by MO physisorbed on their surface is found to be most efficient when the energy of excitons coincides with triplet-singlet splitting energy of oxygen molecules. The dependence of PL quenching efficiency on nanocrystal surface termination is consistent with short-range resonant electron exchange mechanism of energy transfer. A highly developed surface of silicon nanocrystal assemblies and a long radiative lifetime of excitons are favorable for achieving a high efficiency of this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call