Abstract

AbstractThe development of nanoscale optical sensors is desirable for a broad range of applications, including wearable medical‐diagnostics, biochemical detection, and environmental monitoring. Optical detection platforms based on resonant nanostructures are the golden standard for miniaturized footprint and high optical sensitivity. These sensors function by measuring a shift in resonance wavelength upon binding of analytes to their surface. However, such measurements are sensitive to intensity fluctuations of the illuminating source and its wavelength calibration, which limits their applicability. Here, a novel optical sensing concept based on diffraction measurements from resonant dielectric metagratings is proposed and experimentally demonstrated. It is shown that this approach enables the direct measurement of unknown analytes with enhanced sensitivity and without the need for intensity calibrations. The intensified sensitivity of this metagrating‐sensor is derived from combining the resonant phenomena of the nanostructures with the tailored diffraction from the metagrating, thereby providing the highest sensitivity demonstrated to date amongst grating‐based sensors. As a proof of concept, the metagrating‐sensor was validated using an antibody binding assay, achieving a femtomolar‐level limit of detection. Due to their high sensitivity and robust performance, the proposed metagrating sensors pave the way for novel miniaturized medical diagnostics and biosensing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.