Abstract

The coupling of electron momenta is considered for the resonant charge exchange process in slow collisions. Because the electron transfer in this process occurs at large distances between the colliding atomic particles, where ion-atom interactions are relatively weak, we can separate different types of interaction and find the character of coupling of the electron momenta in the quasi-molecule, consisting of the colliding ion and its atom, for real collision pairs. Since the real number of interaction types for colliding particles exceeds that used in the classical Hund coupling scheme, there are intermediate cases of momentum coupling outside the standard Hund scheme. This occurs for the resonant charge exchange involving halogens and oxygen where the quantum numbers of the quasi-molecule in the course of the electron transfer are the total momenta J and j of the colliding ion and atom and the projection M or MJ of the atom orbital or total momentum on the quasi-molecule axis. The ion-atom exchange interaction potential is independent of the ion fine state, and under these conditions, the resonant charge exchange process is not entangled with the rotation of electron momenta, as in case “a” of the Hund coupling. The partial cross section of the resonant charge exchange process depends on quantum numbers of the colliding particles. The average cross sections depend weakly on the coupling scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call