Abstract

We investigated the design, growth, fabrication, and characterization of InAs/GaAsSb SLS resonant cavity light emitting diodes (RCLEDs) grown on InAs by molecular beam epitaxy. The structure consists of a 1λ-thick micro-cavity positioned between two lattice-matched AlAsSb/GaAsSb distributed Bragg reflector mirrors (DBRs). A 44-pair InAs/GaAsSb SLS active region is placed at the antinode of the electric field intensity in the center of the cavity. Electroluminescence emission spectra were recorded at room-temperature. Due to the resonant cavity effect, 400 μm-diameter SLS RCLEDs exhibited emission spectra peaked at 4.587 μm with a narrow spectral linewidth of 52 nm. A high-spectral intensity of >3 mW cm−2 nm−1 was achieved for the 400 μm SLS RCLED using 1% duty cycle to avoid Joule heating. Furthermore, temperature dependence of the emission spectra of the RCLED showed excellent temperature stability, with a rate of 0.34 nm/K. Compared to existing mid-infrared 5-stage InAs/GaAsSb SLS ICLEDs operating at ∼4.5 μm, the (400 μm-diameter) InAs/GaAsSb SLS RCLEDs exhibited 10.5× brighter spectral intensity, 14× narrower spectral linewidth, and 8× improvement in the temperature stability. Owing to these attractive features, our SLS RCLEDs could be used to develop the next generation CO gas instruments and active imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call