Abstract

The exciton–polariton propagation in resonant hybrid periodic stacks of isotropic/anisotropic layers, with misaligned in-plane anisotropy and Bragg photon frequency in resonance with Wannier exciton of 2D quantum wells is studied by self-consistent theory and in the effective mass approximation. The optical tailoring of this new class of resonant Bragg reflectors, where the structural periodicity of a multi-layer drives the in-plane optical -axis orientation, is computed for symmetric and asymmetric elementary cells by conserving strong radiation–matter coupling and photonic band-gaps. The optical response computation, on a finite cluster of N-asymmetric elementary cells, shows anomalous exciton–polariton propagation and absorbance properties strongly dependent on the incident wave polarizations. Finally, the behaviour of the so-called intermediate dispersion curves, close to the unperturbed exciton resonance, and located between upper and lower branches of the first band gap, is studied as a function of the in-plane -axis orientation. This latter optical property is promising for storing exciton–polariton impulses in this kind of Bragg reflector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.