Abstract

As a rule, problems of wave propagation in finite media with non-uniform spatial distribution of material properties can only be tackled by numerical models. In addition, the modeling of damage features in a material requires the introduction of locally non-linear and––more important––non-unique equations of state. Using a multiscale approach, we have implemented a non-linear hysteretic stress–strain relation based on the Preisach–Mayergoyz (PM) model, into a numerical elastodynamic finite integration technique program, which has originally been developed for linearly elastic wave propagation in inhomogeneous media. The simulation results show qualitatively good agreement with data of non-linear resonant bar experiments in homogeneously non-linear and hysteretic media. When the PM density distribution of hysteretic units at the mesoscopic level is not uniform and/or confined to a finite area in stress–stress space, the response at high amplitude excitation tend to deviate from the quasi-analytical results obtained in the case of a uniform PM-space density. Localized microdamage features in an intact medium can be modeled by conceiving finite zones with pronounced hysteretic stress–strain relations within a “linear” surrounding. Forward calculations reveal a significant influence of the amplitude dependent resonance behavior on the location (edge versus center of a bar), the extend (width of the zone) and the degree (density of hysteretic units) of damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.