Abstract
Bose-Einstein condensates of atoms with non-zero spin are known to constitute an ideal system to investigate fundamental properties of magnetic superfluids. More recently it was realized that they also provide the fascinating opportunity to investigate the macroscopic amplification of quantum and classical fluctuations. This is strikingly manifested in a sample initially prepared in the m F = 0 state, where spin-changing collisions triggered by quantum fluctuations may lead to the creation of correlated pairs in m F = ±1. We show that the pair creation efficiency is strongly influenced by the interplay between the external trapping potential and the Zeeman effect. It thus reflects the confinement-induced magnetic field dependence of elementary spin excitations of the condensate. Remarkably, pair production in our experiments is therefore characterized by a multi-resonant dependence on the magnetic field. Pair creation at these resonances acts as strong parametric matter-wave amplifier. Depending on the resonance condition, this amplification can be extremely sensitive or insensitive to the presence of seed atoms. We show that pair creation at a resonance which is insensitive to the presence of seed atoms is triggered purely by quantum fluctuations and thus the system acts as a matter-wave amplifier for the vacuum state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.