Abstract

Bistable or multi-stable structures have found broad applications in the fields of adaptive structures, flow control, and energy harvesting devices due to their unique nonlinear characteristics and strong local stability behavior. In this paper, a theoretical model based on the principle of minimum potential energy and the Rayleigh–Ritz method is established to study the dynamic characteristics of a bistable unsymmetric laminate with a fixed center. Numerical results of this theoretical model were obtained and verified by an FEA model using ABAQUS. The nonlinear dynamic characteristics and the structural response under different levels of external excitation were investigated and verified by experiments. The realization conditions of single-well vibration and cross-well vibration of bistable laminates were determined, with which the actuation strategies can be optimized for targeting modal frequencies of bistable laminates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.