Abstract

AbstractResonant acceleration of plasma electrons in combined circularly polarized Gaussian laser fields and self-generated quasistatic fields has been investigated theoretically and numerically. The latter includes the radial quasistatic electric field, the azimuthal quasistatic magnetic field and the axial one. The resonant condition is theoretically given and numerically testified. The results show some of the resonant electrons are accelerated to velocities larger than the laser group velocity and thus gain high energy. For peak laser intensity I0 = 1 × 1020 W cm−2 and plasma density n0 = 0.1ncr, the relativistic electron beam with energies increased from 207 MeV to 262 MeV with a relative energy width around 24% and extreme low beam divergence less than 1° has been obtained. The effect of laser intensity and plasma density on the final energy gain of resonant electrons is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.