Abstract

Thin foils were irradiated by short pulsed lasers at intensities of 1016−19W/cm2 in order to produce non-equilibrium plasmas and ion acceleration from the target-normal-sheath-acceleration (TNSA) regime. Ion acceleration in forward direction was measured by SiC detectors and ion collectors used in the time-of-flight configuration. Laser irradiations were employed using p-polarized light at different incidence angles with respect to the target surface and at different focal distances from the target surface. Measurements demonstrate that resonant absorption effects, due to the plasma wave excitations, enhance the plasma temperature and the ion acceleration with respect to those performed without to use of p-polarized light. Dependences of the ion flux characteristics on the laser energy, wavelength, focal distance and incidence angle will be reported and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call