Abstract

Interactions of three transverse modes are investigated in a waveguide with periodic walls. Resonances of two guided wave modes always result in forbidden bands for wave propagations when the wavenumber matching conditions are satisfied. As a third mode is involved due to the selected wall corrugations, we find that a single high-order mode can penetrate through the forbidden band based on the complex interactions. A method for generating a single high-order transverse mode is proposed by manipulating the multimode interactions. The numerical simulations on acoustic waveguides, showing the extreme suppression of the unwanted modes in the Bragg and non-Bragg gaps, demonstrate the validity and the efficiency of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call