Abstract

In this study, main and parametric resonances of an asymmetrical spinning shaft with in-extensional nonlinearity and large amplitude are simultaneously investigated. The main resonance is due to inhomogeneous part of the equations of motion, which is due to dynamic imbalances of shaft whereas the parametric resonances are due to parametric excitations due to speed fluctuations and a shaft asymmetry. The shaft is simply supported with unequal mass moments of inertia and flexural rigidities in the direction of principal axes. The equations of motion are derived by the extended Hamilton principle. The stability and bifurcations are obtained by multiple scales method, which is applied to both partial and ordinary differential equations of motion. The influences of asymmetry of shaft, speed fluctuations, inequality between two eccentricities corresponding to the principal axes and external damping on the stability and bifurcation are studied. To investigate the effect of speed fluctuations on the bifurcations and stability the loci of bifurcation points are plotted as function of damping coefficient. The numerical solutions are used to verify the results of multiple scales method. The results of multiple scales method show a good agreement with those of numerical solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.