Abstract

A theoretical study of the resonances of an elastic plate in a compressible flow in a two-dimensional duct is presented. Due to the fluid–structure coupling, a quadratic eigenvalue problem is involved, in which the resonance frequencies k solve the equations λ(k) = k2, where λ is the eigenvalue of a self-adjoint operator of the form A + kB. In a previous paper, we have proved that a linear eigenvalue problem is recovered if the plate is rigid or the fluid at rest. We focus here on the general problem for which elasticity and flow are jointly present and derive a lower bound for the number of resonances. The expression of this bound, based on the solution of two linear eigenvalue problems, points out that the coupling between elasticity and flow generally reduces the number of resonances. This estimate is validated numerically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.