Abstract
Scattering resonances due to the dipole-dipole interaction between ultracold molecules, induced by static or microwave fields, are studied theoretically. We develop a method for coupled-channel calculations that can efficiently impose many short-range boundary conditions, defined by a short-range phase shift and loss probability as in quantum defect theory. We study how resonances appear as the short-range loss probability is lowered below the universal unit probability. This may become realizable for nonreactive ultracold molecules in blue-detuned box potentials.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.