Abstract

In this paper, an analytical method is presented to study an initial-boundary value problem describing the transverse displacements of a vertically moving beam under boundary excitation. The length of the beam is linearly varying in time, i.e., the axial, vertical velocity of the beam is assumed to be constant. The bending stiffness of the beam is assumed to be small. This problem may be regarded as a model describing the lateral vibrations of an elevator cable excited at its boundaries by the wind-induced building sway. Slow variation of the cable length leads to a singular perturbation problem which is expressed in slowly changing, time-dependent coefficients in the governing differential equation. By providing an interior layer analysis, infinitely many resonance manifolds are detected. Further, the initial-boundary value problem is studied in detail using a three-timescales perturbation method. The constructed formal approximations of the solutions are in agreement with the numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.