Abstract

The structure and vibrations of 3,5-difluoroanisole (3,5-DFA) in the first electronically excited (S1) state were studied by mass-analyzed resonant two-photon ionization (R2PI) technique as well as the quantum chemical calculations. The ab initio and density functional theory (DFT) calculations reveal that only one structure is stable for each of the S0, S1, and D0 states. In the one color R2PI spectrum, the band origin of the S1←S0 electronic transition (00 band) of 3,5-DFA is found to be 37,595±3cm−1. In the S1 state, most of the bands observed are related to the in-plane ring deformation and out-of-plane bending vibrations. The adiabatic ionization energy (IE) of 3,5-DFA is determined to be 70,096±15cm−1 by the two color R2PI technique, in agreement with the values predicted by the DFT approaches. The dihalogen-substitution effects on the molecular structure, vibrational frequencies, and electronic transition and ionization energies were discussed in detail. The van der Waals complex of 3,5-DFA with argon (3,5-DFA···Ar) was also observed and studied. The 00 band of 3,5-DFA···Ar complex is red-shifted by about 9cm−1 with respect to that of 3,5-DFA. Both the experimental data and the calculated results indicate that the formation of 3,5-DFA···Ar complex gives only a weak influence on the properties of 3,5-DFA moiety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.