Abstract

We present a method to calculate both on- and off-resonance vibrational Raman optical activities (VROAs) of molecules using time-dependent density functional theory. This is an extension of a method to calculate the normal VROA by including a finite lifetime of the electronic excited states in all calculated properties. The method is based on a short-time approximation to Raman scattering and is, in the off-resonance case, identical to the standard theory of Placzek. The normal and resonance VROA spectra are calculated from geometric derivatives of the different generalized polarizabilites obtained using linear response theory which includes a damping term to account for the finite lifetime. Gauge-origin independent results for normal VROA have been ensured using either the modified-velocity gauge or gauge-included atomic orbitals. For the resonance VROA only the modified-velocity gauge has been implemented. We present some initial results for H(2)O(2) and (S)-methyloxirane and compare with predictions from a simple two-state approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.