Abstract

Metallic bowtie antennas are used in nanophotonics applications in order to confine the electromagnetic field into volumes much smaller than that of the incident wavelength. Electrically controllable carrier concentration of graphene opens the door to the use of plasmonic nanoantenna structures with graphene so that the resonant nature of nanoantennas can be tuned. In this study, we demonstrated with the Fourier transform infrared (FTIR) spectroscopy and the Finite Difference Time Domain (FDTD) method that the intensity and resonance peak of bowtie nanoantennas on monolayer graphene can be tuned at mid-infrared (MIR) wavelength regime by applying a gate voltage, since the optical properties of graphene change by changing the carrier concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.