Abstract

A free electron laser is proposed using a periodic dielectric and helical magnetic field. Periodic synchronism between the electrons and the optical wave is obtained at the period of the dielectric and not at the period of the helical magnetic field. The synchronism condition and the gain of the new device are derived. The effects on the gain of the new device are derived. The effects on the gain from dephasing and beam expansion due to elastic scattering of the electrons in the periodic medium are included in the gain calculation. Examples of the resonance transition radiation laser and klystron are given. Operation at photon energies between 2.5 and 3.5 keV with net gain up to 12% is feasible using high electron-beam energies of 3 and 5 GeV. Moderate (300-MeV) beam energy allows operation between 80 to 110 eV with up to 57% net gain using a klystron design. In both cases, rapid foil heating may limit operation to a single electron-beam pulse.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.